幸运彩票|登录平台

                    REVERSAL-ADDITION PALINDROME TEST ON 10794

                    Reverse and Add Process:

                    1. Pick a number.
                    2. Reverse its digits and add this value to the original number.
                    3. If this is not a palindrome, go back to step 2 and repeat.
                    Let's view this Reverse and Add sequence starting with 10794:
                    10794
                    + 49701
                    step 1: 60495
                    + 59406
                    step 2: 119901
                    + 109911
                    step 3: 229812
                    + 218922
                    step 4: 448734
                    + 437844
                    step 5: 886578
                    + 875688
                    step 6: 1762266
                    + 6622671
                    step 7: 8384937
                    + 7394838
                    step 8: 15779775
                    + 57797751
                    step 9: 73577526
                    + 62577537
                    step 10: 136155063
                    + 360551631
                    step 11: 496706694
                    + 496607694
                    step 12: 993314388
                    + 883413399
                    step 13: 1876727787
                    + 7877276781
                    step 14: 9754004568
                    + 8654004579
                    step 15: 18408009147
                    + 74190080481
                    step 16: 92598089628
                    + 82698089529
                    step 17: 175296179157
                    + 751971692571
                    step 18: 927267871728
                    + 827178762729
                    step 19: 1754446634457
                    + 7544366444571
                    step 20: 9298813079028
                    + 8209703188929
                    step 21: 17508516267957
                    + 75976261580571
                    step 22: 93484777848528
                    + 82584877748439
                    step 23: 176069655596967
                    + 769695556960671
                    step 24: 945765212557638
                    + 836755212567549
                    step 25: 1782520425125187
                    + 7815215240252871
                    step 26: 9597735665378058
                    + 8508735665377959
                    step 27: 18106471330756017
                    + 71065703317460181
                    step 28: 89172174648216198
                    + 89161284647127198
                    step 29: 178333459295343396
                    + 693343592954333871
                    step 30: 871677052249677267
                    + 762776942250776178
                    step 31: 1634453994500453445
                    + 5443540054993544361
                    step 32: 7077994049493997806
                    + 6087993949404997707
                    step 33: 13165987998898995513
                    + 31559989889978956131
                    step 34: 44725977888877951644
                    + 44615977888877952744
                    step 35: 89341955777755904388
                    + 88340955777755914398
                    step 36: 177682911555511818786
                    + 687818115555119286771
                    step 37: 865501027110631105557
                    + 755501136011720105568
                    step 38: 1621002163122351211125
                    + 5211121532213612001261
                    step 39: 6832123695335963212386
                    10794 takes 39 iterations / steps to resolve into a 22 digit palindrome.

                    REVERSAL-ADDITION PALINDROME RECORDS

                    Most Delayed Palindromic Number for each digit length
                    (Only iteration counts for which no smaller records exist are considered. My program records only the smallest number that resolves for each distinct iteration count. For example, there are 18-digit numbers that resolve in 232 iterations, higher than the 228 iteration record shown for 18-digit numbers, but they were not recorded, as a smaller [17-digit] number already holds the record for 232 iterations.)

                    DigitsNumberResult
                    2
                    3
                    4
                    5
                    6
                    7
                    8
                    9
                    10
                    11
                    12
                    13
                    14
                    15
                    16
                    17
                    18
                    19
                    89
                    187
                    1,297
                    10,911
                    150,296
                    9,008,299
                    10,309,988
                    140,669,390
                    1,005,499,526
                    10,087,799,570
                    100,001,987,765
                    1,600,005,969,190
                    14,104,229,999,995
                    100,120,849,299,260
                    1,030,020,097,997,900
                    10,442,000,392,399,960
                    170,500,000,303,619,996
                    1,186,060,307,891,929,990
                    solves in 24 iterations.
                    solves in 23 iterations.
                    solves in 21 iterations.
                    solves in 55 iterations.
                    solves in 64 iterations.
                    solves in 96 iterations.
                    solves in 95 iterations.
                    solves in 98 iterations.
                    solves in 109 iterations.
                    solves in 149 iterations.
                    solves in 143 iterations.
                    solves in 188 iterations.
                    solves in 182 iterations.
                    solves in 201 iterations.
                    solves in 197 iterations.
                    solves in 236 iterations.
                    solves in 228 iterations.
                    solves in 261 iterations - World Record!
                    [View all records]

                    This reverse and add program was created by Jason Doucette.
                    Please visit my Palindromes and World Records page.
                    You have permission to use the data from this webpage (with due credit).
                    A link to my website is much appreciated. Thank you.

                    (This program has been run 2,095,805 times since Saturday, March 9th, 2002.)

                                      explore

                                      aviation

                                      Celebrity

                                      explore

                                      car

                                      entertainment

                                      explore

                                      education

                                      Technology