幸运彩票|登录平台

                    REVERSAL-ADDITION PALINDROME TEST ON 1058921

                    Reverse and Add Process:

                    1. Pick a number.
                    2. Reverse its digits and add this value to the original number.
                    3. If this is not a palindrome, go back to step 2 and repeat.
                    Let's view this Reverse and Add sequence starting with 1058921:
                    1058921
                    + 1298501
                    step 1: 2357422
                    + 2247532
                    step 2: 4604954
                    + 4594064
                    step 3: 9199018
                    + 8109919
                    step 4: 17308937
                    + 73980371
                    step 5: 91289308
                    + 80398219
                    step 6: 171687527
                    + 725786171
                    step 7: 897473698
                    + 896374798
                    step 8: 1793848496
                    + 6948483971
                    step 9: 8742332467
                    + 7642332478
                    step 10: 16384664945
                    + 54946648361
                    step 11: 71331313306
                    + 60331313317
                    step 12: 131662626623
                    + 326626266131
                    step 13: 458288892754
                    + 457298882854
                    step 14: 915587775608
                    + 806577785519
                    step 15: 1722165561127
                    + 7211655612271
                    step 16: 8933821173398
                    + 8933711283398
                    step 17: 17867532456796
                    + 69765423576871
                    step 18: 87632956033667
                    + 76633065923678
                    step 19: 164266021957345
                    + 543759120662461
                    step 20: 708025142619806
                    + 608916241520807
                    step 21: 1316941384140613
                    + 3160414831496131
                    step 22: 4477356215636744
                    + 4476365126537744
                    step 23: 8953721342174488
                    + 8844712431273598
                    step 24: 17798433773448086
                    + 68084437733489771
                    step 25: 85882871506937857
                    + 75873960517828858
                    step 26: 161756832024766715
                    + 517667420238657161
                    step 27: 679424252263423876
                    + 678324362252424976
                    step 28: 1357748614515848852
                    + 2588485154168477531
                    step 29: 3946233768684326383
                    + 3836234868673326493
                    step 30: 7782468637357652876
                    + 6782567537368642877
                    step 31: 14565036174726295753
                    + 35759262747163056541
                    step 32: 50324298921889352294
                    + 49225398812989242305
                    step 33: 99549697734878594599
                    + 99549587843779694599
                    step 34: 199099285578658289198
                    + 891982856875582990991
                    step 35: 1091082142454241280189
                    + 9810821424542412801901
                    step 36: 10901903566996654082090
                    + 09028045669966530910901
                    step 37: 19929949236963184992991
                    + 19929948136963294992991
                    step 38: 39859897373926479985982
                    + 28958997462937379895893
                    step 39: 68818894836863859881875
                    + 57818895836863849881886
                    step 40: 126637790673727709763761
                    + 167367907727376097736621
                    step 41: 294005698401103807500382
                    + 283005708301104896500492
                    step 42: 577011406702208704000874
                    + 478000407802207604110775
                    step 43: 1055011814504416308111649
                    + 9461118036144054181105501
                    step 44: 10516129850648470489217150
                    + 05171298407484605892161501
                    step 45: 15687428258133076381378651
                    + 15687318367033185282478651
                    step 46: 31374746625166261663857302
                    + 20375836616266152664747313
                    step 47: 51750583241432414328604615
                    + 51640682341423414238505715
                    step 48: 103391265582855828567110330
                    + 033011765828558285562193301
                    step 49: 136403031411414114129303631
                    + 136303921411414114130304631
                    step 50: 272706952822828228259608262
                    + 262806952822828228259607272
                    step 51: 535513905645656456519215534
                    + 435512915654656546509315535
                    step 52: 971026821300313003028531069
                    + 960135820300313003128620179
                    step 53: 1931162641600626006157151248
                    + 8421517516006260061462611391
                    step 54: 10352680157606886067619762639
                    + 93626791676068860675108625301
                    step 55: 103979471833675746742728387940
                    + 049783827247647576338174979301
                    step 56: 153763299081323323080903367241
                    + 142763309080323323180992367351
                    step 57: 296526608161646646261895734592
                    + 295437598162646646161806625692
                    step 58: 591964206324293292423702360284
                    + 482063207324292392423602469195
                    step 59: 1074027413648585684847304829479
                    + 9749284037484865858463147204701
                    step 60: 10823311451133451543310452034180
                    + 08143025401334515433115411332801
                    step 61: 18966336852467966976425863366981
                    1058921 takes 61 iterations / steps to resolve into a 32 digit palindrome.

                    REVERSAL-ADDITION PALINDROME RECORDS

                    Most Delayed Palindromic Number for each digit length
                    (Only iteration counts for which no smaller records exist are considered. My program records only the smallest number that resolves for each distinct iteration count. For example, there are 18-digit numbers that resolve in 232 iterations, higher than the 228 iteration record shown for 18-digit numbers, but they were not recorded, as a smaller [17-digit] number already holds the record for 232 iterations.)

                    DigitsNumberResult
                    2
                    3
                    4
                    5
                    6
                    7
                    8
                    9
                    10
                    11
                    12
                    13
                    14
                    15
                    16
                    17
                    18
                    19
                    89
                    187
                    1,297
                    10,911
                    150,296
                    9,008,299
                    10,309,988
                    140,669,390
                    1,005,499,526
                    10,087,799,570
                    100,001,987,765
                    1,600,005,969,190
                    14,104,229,999,995
                    100,120,849,299,260
                    1,030,020,097,997,900
                    10,442,000,392,399,960
                    170,500,000,303,619,996
                    1,186,060,307,891,929,990
                    solves in 24 iterations.
                    solves in 23 iterations.
                    solves in 21 iterations.
                    solves in 55 iterations.
                    solves in 64 iterations.
                    solves in 96 iterations.
                    solves in 95 iterations.
                    solves in 98 iterations.
                    solves in 109 iterations.
                    solves in 149 iterations.
                    solves in 143 iterations.
                    solves in 188 iterations.
                    solves in 182 iterations.
                    solves in 201 iterations.
                    solves in 197 iterations.
                    solves in 236 iterations.
                    solves in 228 iterations.
                    solves in 261 iterations - World Record!
                    [View all records]

                    This reverse and add program was created by Jason Doucette.
                    Please visit my Palindromes and World Records page.
                    You have permission to use the data from this webpage (with due credit).
                    A link to my website is much appreciated. Thank you.

                    (This program has been run 2,095,885 times since Saturday, March 9th, 2002.)

                                      aviation

                                      constellation

                                      Buy a car

                                      Celebrity

                                      mailbox

                                      aviation

                                      game

                                      Mobile phone

                                      explore